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attention and useful discussions. 
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An oblique regular reflection is considered of a plane shock wave from a rigid 
wall in a steady flow of a perfect, ideally dissociating gas with infinite conduc- 
tivity in the presence of a magnetic field normal to the plane of flow. A flow 
behind the reflected shock wave is studied in the vicinity of the triple point, i. e. 
the point at which the curvature of the shock wave becomes different from zero. 
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An assumption that a first order discontinuity occurs at the triple point, is used 
to obtain an expression for the jump in the derivatives of the flow parameters 
on the streamline emerging from this point and for the jumps in the current den- 

sity and vorticity. 
The properties of flow at the triple point regarded as a singularity on the re- 

flected shock wave were first studied in [l]. Short conclusions derived from the 
theoretical papers dealing with the subject were given in p]. Experimental data 
concerning the shock wave angles at the triple point were given in [3, 41. Com- 
parison of the theoretical and experimental results was presented in [5, 61, and 
[7, 81 analyse the Mach reflection. Theoretical and experimental results con- 
cerning the magnetohydrodynamic interaction between the reflected shock wave 
and a homogeneous magnetic field were given in [9]. 

The present paper represents a generalization of DO] to the case of an ideally 
conducting, dissociating gas in the presence of a transverse magnetic field. 

1, Statement of the problem. The following simplifying assumptions are 
made: (1) viscosity, diffusion and heat conductivity are all neglected; (2) the dissoci- 
ating gas is assumed diatomic and each of the reacting components is assumed to be a 

perfect gas; (3) the gas temperature varies from 1000’ to 7000’ K so that only the 

B process of dissociation is essential, the 
energy used on ionization and electron 
excitation being neglected and (4) the 

radiant energy losses are not taken into 
account. 

The condition upstream of the inci- 
dent rectilinear shock is assumed homo- 
geneous, therefore the flow parameters 

Fig. 1 
in the region IOTB (see Fig. 1) can be 

assumed constant without loss of gene- 
rality. The reflected shock becomes 

curved behind the point 2’ due to the effect of the sonic perturbations. The streamline 
ST emerging from the triple point 2’ divides the region 0 TB lying behind the reflec- 
ted shock wave into a region of homogeneous parameters behind the rectilinear part OT 

of the shock, and an inhomogeneous region (RI) behind the curved part TB of the shock. 
At the point 3’ the curvature of the shock suffers a discontinuity, although its first 

derivative remains continuous, i. e. the rectilinear part of the shock is tangent to the 
curved part at the point 2’. Further it is assumed that a first order discontinuity OCCLZS 

at T . Then the conditions of continuity of the total pressure (magnetic plus gasdyna- 
mic), as well as continuity of streamline curvatures, hold at this point which lies on the 
streamline TS. To satisfy the last condition we shall assume, following [lo], that the 
region behind the rectilinear part of the shock wave is divided by the curved boundary 
(TD) into two parts: one part which is directly adjoint to the shock wave UrD (Rs), in 
which all parameters are homogeneous, and the region STD (R,), in which the flow para- 
meters vary continuously in a specific manner. 

The equations of continuity, motion, energy and magnetic field induction for the case 
of a two-dimensional steady flow of an ideally conducting gas in the presence of a trans- 
verse magnetic field, are written in the form 
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qp,i + pq,i = 0 

P"jui,j + P,i* = 0 @* = P + 
pUih,i - Uip,i = 0 

UiH,i f Hui*i = 0 

(1.1) 
Ha I 8~) (1.2) 

(1.3) 

(1.4) 

Here P, p, ui and h = h (p, P, a) are, respectively, the density, pressure, velocity com- 
ponents and total enthalpy of the mixture (a is the degree of dissociation). The repeated 

index denotes summation over the region 1, 2 and a coma preceeding the index denotes 
differentiation with respect to the corresponding coordinate. 

We shall consider the gas as a mixture formed by dissociation of a diatomic gas A,, 
the molecules of which are composed of the atoms A, of the gas. Assuming that the 

dissociation is ideal we shall write, following [ll], the equations of state and an expres- 

sion for the enthalpy. in the form 

IJ=(~ +a) PRT, 
h = (4$_U)P 

P(i+a) +aD (1.5) 

where T is temperature, R is the gas constant for -4, and D is the energy of dissocia- 

tion. In this case, using the equation of continuity for A, from [12], we obtain the fol- 
lowing expression for the degree of dissociation 

4KrpD2 (i + Co 
uir, j = 

RZT2 d I 
Pd~l--(lb?sp!- $) --w] (I.@ 

Here Pd and Td are the characteristic density and temperature obtained in [11] and K,. 
is the rate of the reverse reaction. Observations show that within the temperature range 
given above the quantity Pd varies little, therefore from now on we shall assume it con- 

stant. Inserting (l.l), (1.2),(1.5) and (1.6) into (1.3). we obtain 

uip,i $ PQf’ui,i + F = 6, af2 = P (4 + a) / 3P (l-7) 

4pK,D2 
F=- 

3RaT2 d 

pd(l-a)Rxp(- 2) -pple][pD(l++3p] 

where at denotes the frozen speed of sound. 
Let the equation of the reflected shock wave be given in the parametric form “i = 

zi (s) (i= 1,2), where ‘i is the Cartesian coordinate of the discontinuity and s is the arc 
length along this discontinuity. Any streamline intersecting the reflected shock can be 
defined as a curve s = const. Let z be the arc length along a streamline. Behind the 
reflected shock wave we pass to the curvilinear ( s, z )-coordinate system in such a man- 
ner, that z = 0 corresponds to the shock wave 0 TB (see Fig. 1). Let hi and ni denote 
the components of the unit vector tangential and normal to the line ‘c = const. Then 
we have the following relations [lo] 

f3Xi ax. ui 

as ‘=hi, az u ( 
t=- v2 = uiui 

Uf = Uihi, un = u.n. 

ni =- eijhj (en = e22 = 0, en 1 L eu = I) 

af ei~UC af vni -- 
f,iZZ un + 8~ un 

(1.8) 

Using (1.6) we now write (1. l), (1.2),(1.4) and (1.7) in the form 
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(1.9) 

alli eij"j ap+ V ap* 
-_ pvar- u 

- =o 
n 

as +u, 3 at 

aH aP 
P~=Hx 

ap 
UK -v&+F=O 

(1.10) 

(1.11) 

(1.12) 

2. Proportion of the flow behind the reflected nhock wave. 
Theorem 1. Variations in the flow characteristics along the streamlines and along 

the curves t = con& are connected by the following relations 

aH aui w 
una - a/*2) K = - pu,eijuj X‘ - F - Ut 7 (2.1) 

aui ap* H 
Pu,,e+j x - utr z-un2 (2.2) 

au. 
1_ 

e. u. 13 I w ni 
Pv at 

c3p H2F 

-7 TiF- unaf2 @ (a/*Y at - 4np 3 

(af*a = ata + Hz I 4np) 

Proof. Multiplying (1.10) by ni , eliminating ap* I az and niaui / az and using 
(1.9). (1.11) and (1.12). we obtain (2.1). Substitution of (2.1) into (1.12) and (1. lo) 
yields (2.2) and (2.3). 

Theorem 2. The gradients ‘of the flow characteristics along the curvilinear bound- 
ary TD are given by q,j = Lnj’q’, H,j = - HLnj’ / G’ (2.4) 

H= 
P *= ,Z L 4fiunf - pu,’ ni’* ( > 

P,i = 
pLn+’ 

%’ 
F 

L = p [(un’)S - af*2] ’ %I = uini’ 

(2.5) 

(2.6) 

where ni’ denote the components of a unit vector normal to the curve TD. 
Proof. In the region R, all parameters are constant, therefore at the boundary TD 

we have 
Ui,jhj’ = 0, H,jhj’ = 0, p,j I’ h = 0, p$j = 0 (2.7) 

Ui,j = B inj’, H,i = bj’, P,i = bit (2.8) 
Here hj’ are the components of a unit vector tangent to DI. Multiplying (1.2) by 
A,‘, using (2.7) and (2.8) and taking into account the fact that u,’ # 0, we have 

pihi’ = 0 (2.9) 

Eliminating uipIi from (1.2) and (1.7). and using (1.4) and (2.8), we obtain 

ui, i = Pini’ = 
F 

p (U,‘a - af*a) = L 

Comparing now (2.2) with (2. lo), we conclude that 

$i = Lni’ 

Now we use (2.8) and (2.10) to obtain from (1.4) and (1.2) 

(2.20) 

(2.11) 
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5 = - HL / un’, 5 = - pL I un’ 

which proves the theorem. 
Note. When the reaction is frozen, F = 0 at every point of the flow. The flow 

in R, is continuous and inhomogeneous, therefore from (2.4) - (2.6) it follows that 
L # 0, i. e. in Rz the following relation holds : 

af n 
*a == 1( J2 

When F # 0 , by virtue of (2.7). all quantities are continuous at the boundary and we 

therefore have on CD af*2 # unla 

Theorem 3. The quantities in the region RI and R, are connected at the point 
T by the following relations: 

VUt aP* 

( ) 

V2 

‘,, a’ / R 

aP* \, -- _-- 

jP 

UT% ( 8s IR, 
= - pu,‘ut’L (2.12) 

va *a at R, = F - pLt~~‘z I t ‘i 
(2.13) 

Proof. The curvature K of the streamline is given, with (1.2) taken into account, 

bY -v3K=r. u u.u 
1 

tk k 3 i,J 
= p eijukp, i* 

From this by virtue of the continuity of the curvature of the streamline at the point T 
we have eikUk (p, i*)R, = elk”k (p, i*)Ij P 

Expressing the pressure gradient in RI in terms of the derivatives in z and s given by 

(1.8) and that in R, using the formulas (2.4),(2.5), we obtain (2.12) at the point T 
Here the derivative with respect to z of the total pressure in RI is determined by (2.1) 

and (2.2). The variation of stream parameters along the curved part of the reflected 
shock wave can be expressed in terms of the wave intensity, curvature of the wavefront 

and the parameters of the free stream. Since the total pressure varies continuously 

along the streamline TS , we have 

Ui (p, i*)n, = ui iP, i*)R* (2.14) 

Using the relations (2.4) and (2.5) to express its right-hand side at 2’ and (1. 8) for its 

left-hand side, we obtain ’ ap*‘ 
V 

( ! at R, 
= - pLu,‘2 (2.15) 

Replacing now the left-hand side from (1.11) and (1.12). we obtain (2.13). Q. E. D. 

Theorem 4. The jumps in the values of the gradients of the flow and magnetic 

field parameters on the streamline TS at the point T , are given by 

[H, J = $ {(Pq*T (F - PLu,‘2) + Ll=* + 

$- Hut (pu,~~*~)-~ (F - PL”, ‘2) _ $ (‘!!) RI + 5 ffL] eujuj 
R 7% 

(2.16) 

(2.17) 
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PI oof. Using the fact that the parameters are continuous on the streamline TS, we 

express the jumps in their derivatives at the point T , in the form 

[j,& = [al uf + If4 eijui (2.20 f 

[a] = f {@if, i lR1 - Pi f, i )R*l 

[b] = -& {(e#j f, i jR; - (eijujf, i )R,) 

Here f denotes one of the quantities Uir H, P or p, and the square brackets denote the 
corresponding jumps at the streamline TS. Using (2.4) - (2.6) we obtain the following 

expressions for the region Rz at the point T: 

Further, using the coordinate transformations (1.8), expressions (2.13) and Eqs.(l.lO)- 

(1.12), respectively, we obtain the following expressions in the region fix: 

(=iP, * fR* = 

F - pLu’,a 
(e..u.p .) 1= 

Ut (F - pLw 
It 

2) v= ap 
af*Z 23 3 12 Rl 

%aaf 
aa --was& i ) 

(2.22) 

Substituting (2.21) and (2.22) into (2. ZO), we obtain (2.16)- (2.191, Q. E,D, 
Theorem 5. The jumps of vorticity o and the current density i on the stream- 

line TS at the point T are given by the formulas 



530 R.Ram and V.D.Sharma 

0 = ‘I2 hi - UI j) eij, i = e,jHij 143X 

Considering the jump of these values on the streamline Z’S at the point T and using 

the formulas (2.16) and (2.17)‘ we obtain (2.23). 
The authors thank R. S. Mishra for support and deep interest in the present work. 
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